Name: _____

Student ID:_____

Instructions:

- 1. You must show correct work to receive credit. Correct answers with inconsistent work will not be given credit.
- 2. Books, notes and calculators are not allowed.
- 3. Turn off and put away all cell phones.

Page	Points	Points Possible
2		12
3		12
4		14
5		10
6		12
Total		50

Name: _____

1. (6 pts) Let
$$V = \left\{ \begin{bmatrix} 2a+b+3c\\ 2b+2c\\ 4a-3b+c \end{bmatrix} \middle| a,b,c \in \mathbb{R} \right\}$$
. Find dim V.

2. (6 pts) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a mapping with

$$T\left(\left[\begin{array}{c}-1\\2\\0\end{array}\right]\right) = \left[\begin{array}{c}3\\0\\a\end{array}\right], \qquad T\left(\left[\begin{array}{c}0\\4\\3\end{array}\right]\right) = \left[\begin{array}{c}-1\\b\\5\end{array}\right], \qquad T\left(\left[\begin{array}{c}4\\0\\6\end{array}\right]\right) = \left[\begin{array}{c}c\\6\\2\end{array}\right].$$

For which values of a, b, c is T a linear operator?

Name: ____

3. (6 pts) Let $T: V \to W$ be a linear transformation and let U be a subspace of W. Prove that the set $S = \{v \in V | T(v) \in U\}$ is a subspace of V.

4. (6 pts) Let $T: V \to V$ be a linear operator. Determine whether the set $W = \{v \in V | T(v) = v\}$ is a subspace of V.

Name: _____

5. (4 pts) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$T\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \left[\begin{array}{c}|x|\\|y|\end{array}\right]$$

where |x| is the absolute value of x. Determine whether T is a linear transformation.

6. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T\left(\left[\begin{array}{c}x\\y\\z\end{array}\right]\right) = \left[\begin{array}{c}x+2y\\y-z\\x+2z\end{array}\right].$$

- (a) (6 pts) Find a basis for N(T).
- (b) (4 pts) Find $\dim(R(T))$.

Name: ____

7. (4 pts) Let $\{v_1, v_2, \ldots, v_k\}$ be a linearly independent set of vectors in a vector space V. Show that the set $\{v_1, v_2, \ldots, v_{k-1}\}$ cannot be a basis for V.

8. (6 pts) Let

$$V = \left\{ \begin{bmatrix} 1 & 1+t \\ 2+t & 2 \end{bmatrix} \middle| t \in \mathbb{R} \right\}.$$

Define
$$\begin{bmatrix} 1 & 1+t \\ 2+t & 2 \end{bmatrix} \oplus \begin{bmatrix} 1 & 1+s \\ 2+s & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1+t+s \\ 2+t+s & 2 \end{bmatrix}$$

Find the additive identity and additive inverse.

Name: ____

- **9.** (4 pts each) Determine whether each of the following statements is true or false. Justify your answer.
 - (a) If $\{a, b, c\}$ is linearly dependent then a is a linear combination of b and c.

(b) If $T : \mathbb{R}^{12} \to \mathbb{R}^7$ is a linear transformation, then $\dim(N(T)) \ge 5$.

(c) If W is a subspace of a vector space V, then V - W, the set of all vectors that are in V but not in W, is also a subspace of V.